三角形外角平分线定理具体定理内容~

问题描述:

三角形外角平分线定理
具体定理内容~

三角形外角平分线定理:如果三角形的外角平分线外分对边成两条线段,那么这两条线段和相邻的两边应成比例.

在三角形abc中,角A的外角平分线交BC的延长线于D则:BD:CD=AB:AC
证明:过点d作de平行ac交ba于e
因为角cad=角dae
所以角cad=dae=ade
所以ae=de
BD:CD=BE:AE=BE:DE=BA:AC