设函数f(x)=2cos2x+23sinxcosx+m(x∈R) (Ⅰ)求函数f(x)的最小正周期; (Ⅱ)若x∈[0,π2],是否存在实数m,使函数f(x)的值域恰为[1/2,7/2]?若存在,请求出m的取值;若不存在,请说

问题描述:

设函数f(x)=2cos2x+2

3
sinxcosx+m(x∈R)
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若x∈[0,
π
2
],是否存在实数m,使函数f(x)的值域恰为[
1
2
7
2
]?若存在,请求出m的取值;若不存在,请说明理由.

(I)由题意可得:
f(x)=2cos2x+2

3
sinxcosx+m
=1+cos2x+
3
sin2x+m
=2sin(2x+
π
6
)+m+1,
所以函数f(x)的最小正周期T=
2
=π.
(Ⅱ)假设存在实数m符合题意,∵x∈[0,
π
2
]

π
6
≤2x+
π
6
6
,则sin(2x+
π
6
)∈[−
1
2
,1]
…(9分)
f(x)=2sin(2x+
π
6
)+m+1∈[m,3+m]
…(10分)
又∵f(x)∈[
1
2
7
2
]
,解得  m=
1
2
…(13分)
∴存在实数m=
1
2
,使函数f(x)的值域恰为[
1
2
7
2
]
…(14分)