已知抛物线y=x2+(2n-1)x+n2-1(n为常数).当抛物线经过原点,并且顶点在第四象限时,求出它所对应的函数关系式.

问题描述:

已知抛物线y=x2+(2n-1)x+n2-1(n为常数).当抛物线经过原点,并且顶点在第四象限时,求出它所对应的函数关系式.

由已知条件,得n2-1=0,
解这个方程,得n1=1,n2=-1.
当n=1时,得y=x2+x,此抛物线的顶点不在第四象限;
当n=-1时,得y=x2-3x,此抛物线的顶点在第四象限.
故所求的函数关系为y=x2-3x.