a,b,c,d为正实数,求证a/(b+d+2c)+b/(a+c+2d)+c/(d+b+2a)+d/(a+c+2b)>=1急!
问题描述:
a,b,c,d为正实数,求证a/(b+d+2c)+b/(a+c+2d)+c/(d+b+2a)+d/(a+c+2b)>=1
急!
答
由柯西不等式有a/(b+d+2c)+b/(a+c+2d)+c/(d+b+2a)+d/(a+c+2b)>=(1+1+1+1)*{(a+b+c+d)/[(b+d+2c)+(a+c+2d)+(d+b+2a)+(a+c+2b)]}=4*1/4=1
得证