找规律 2/1*2*3+2/2*3*4+2/4*5*6+2/5*6*7+...+2/1999*2000*2001

问题描述:

找规律 2/1*2*3+2/2*3*4+2/4*5*6+2/5*6*7+...+2/1999*2000*2001

找规律1/[n(n+1)(n+2)]与1/n,1/(n+1),1/(n+2)的关系,可以知道下式成立:2/[n(n+1)(n+2)]=[1/n+1/(n+2)]-2/(n+1),于是可以列出:2/(1*2*3)=1+1/3-12/(2*3*4)=1/2+1/4-2/32/(3*4*5)=1/3+1/5-2/42/(4*5*6)=1/4+1/6-2/52...