以直角三角形ABC三边为直角作圆,试探索三个圆的面积之间关系
问题描述:
以直角三角形ABC三边为直角作圆,试探索三个圆的面积之间关系
答
由勾股定理,如果设斜边为a,b,直角边c,则有a^2+b^2=c^2,所以可以得到以斜边为直径的两圆面积之和等于以直角边为直径的圆的面积
以直角三角形ABC三边为直角作圆,试探索三个圆的面积之间关系
由勾股定理,如果设斜边为a,b,直角边c,则有a^2+b^2=c^2,所以可以得到以斜边为直径的两圆面积之和等于以直角边为直径的圆的面积