E,F分别是正方形ABCD的边BC,DC上的点,且∠EAF=45°,试说明EF=BE+DF
问题描述:
E,F分别是正方形ABCD的边BC,DC上的点,且∠EAF=45°,试说明EF=BE+DF
答
延长EB到G,使BG=DF,连接AG
∵ABCD是正方形
∴AB=AD ∠BAD=∠ABE=∠D=90°
∴ ∠ABG=∠D=90°
∴△ABG ≌△ADF
∴AG=AF ∠BAG=∠DAF
∵∠EAF=45°
∴ ∠BAE+∠DAF=90°-∠EAF=45°
∴ ∠BAE+∠BAG=45°
∴ ∠EAG=∠EAF
∵AE=AE AG=AF
∴△AEG ≌△AEF
∴EG=EF
∵EG=BE+BG=BE+DF
∴EF=BE+DF