已知:如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=kx(k≠0)的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,-2),tan∠BOC=25.(1)求该反比例函数和一次函数的解析式;(2)在x轴上有一点E(O点除外),使得△BCE与△BCO的面积相等,求出点E的坐标.

问题描述:

已知:如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=

k
x
(k≠0)的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,-2),tan∠BOC=
2
5


(1)求该反比例函数和一次函数的解析式;
(2)在x轴上有一点E(O点除外),使得△BCE与△BCO的面积相等,求出点E的坐标.

(1)过B点作BD⊥x轴,垂足为D,∵B(n,-2),∴BD=2,在Rt△OBD中,tan∠BOC=BDOD,即2OD=25,解得OD=5,又∵B点在第三象限,∴B(-5,-2),将B(-5,-2)代入y=kx中,得k=xy=10,∴反比例函数解析式为y=10x,将A...
答案解析:(1)过B点作BD⊥x轴,垂足为D,由B(n,-2)得BD=2,由tan∠BOC=

2
5
,解直角三角形求OD,确定B点坐标,得出反比例函数关系式,再由A、B两点横坐标与纵坐标的积相等求n的值,由“两点法”求直线AB的解析式;
(2)点E为x轴上的点,要使得△BCE与△BCO的面积相等,只需要CE=CO即可,根据直线AB解析式求CO,再确定E点坐标.
考试点:反比例函数综合题.

知识点:本题考查了反比例函数的综合运用.关键是通过解直角三角形确定B点坐标,根据反比例函数图象上点的坐标特求A点坐标,求出反比例函数解析式,一次函数解析式.