已知△ABC的三个内角A,B,C成等差数列,A,B,C的对边分别为a,b,c,求证1/(a+b)+1/(b+c)=3/(a+b+c)

问题描述:

已知△ABC的三个内角A,B,C成等差数列,A,B,C的对边分别为a,b,c,求证1/(a+b)+1/(b+c)=3/(a+b+c)

b^2=c^2+a^2-2ca*cosB =c^2+a^2-2ca*cos60° =c^2+a^2-2ca*1/2 =c^2+a^2-ca 欲证等式左边:1/(a+b)+1/(b+c) =(a+2b+c)/(a+b)(b+c) =(a+2b+c)/(ab+ac+b^2+bc)=3/(a+b+c).① 于是原题等价于证明①式成立,交叉相乘得:3...