1.已知数列{an},满足a1=1,若点(an/n,(a(n+1))/(n+1))在直线x-y+1=0上,求数列{an}的通项公式.
问题描述:
1.已知数列{an},满足a1=1,若点(an/n,(a(n+1))/(n+1))在直线x-y+1=0上,求数列{an}的通项公式.
2.已知数列{an},满足a1=4,an=4-4/a(n-1),(n大于等于2)令bn=1/(an-2).
(1)求证:数列{bn}是等差数列;
(2)求数列{an}的通项公式.
答
1.根据题意,点(an/n,(a(n+1))/(n+1))在直线x-y+1=0上,将该点代入该直线方程,得,
a(n+1)/(n+1)=an/n+1
所以
an/n =a(n-1)/(n-1)+1
a(n-1)/(n-1)=a(n-2)/(n-2)+1
.
.
a2/2=a1/1+1
上述关系式,左边+左边=右边+右边,并消去相同的项,得
an/n=a1+n-1=n
所以 an=n^2
2.
(1)证明:由题意,bn=1/(an-2)
所以 b(n+1)-bn=1/(a(n+1)-2)-1/(an-2) (*)
由于an=4-4/a(n-1),所以,a(n+1)=4-4/an,所以,a(n+1)-2=2-4/an
所以1/(a(n+1)-2)=1/(2-4/an)=an/(2*an-4)
将上式代入(*)式,得
b(n+1)-bn=1/(a(n+1)-2)-1/(an-2)=an/(2*an-4))-1/(an-2)=(an-2)/(2*(an-2))=0.5
所以 数列{bn}是等差数列,公差为0.5 ,通项为 bn=0.5*n
根据bn=1/(an-2)得,
1/(an-2)=0.5*n
解得,an=2+2/n