设函数F(X)=X^3+x,X属于R,若0≤θ≤90度时,F(msinθ) F(1-m)>0恒成立,则m的取值范围是?

问题描述:

设函数F(X)=X^3+x,X属于R,若0≤θ≤90度时,F(msinθ) F(1-m)>0恒成立,则m的取值范围是?
步骤思路,谢谢

因为F(X)=X^3+x为奇函数且F(X)=X^3+x=x(x^2+1),所以F(X)=0的解为x=0
所以,当x>0时F(X)>0,当x0 因为 0≤θ≤90度 所以sinθ>0 因此解得 0