已知定义在R上的偶函数y=f(x+1)=-f(x),且在区间[-1,0]上单调递增,设a=f(√2),b=f(2),c=f(3),则它们大小是

问题描述:

已知定义在R上的偶函数y=f(x+1)=-f(x),且在区间[-1,0]上单调递增,设a=f(√2),b=f(2),c=f(3),则它们大小是

因为y是偶函数,所以有:y=f(x+1)=-f(x)=-f(-x)
f(0.5)=-f(-0.5)=-f(0.5),所以f(0.5)=0;
又因为偶函数是关于y轴对称的,所以y在区间[0,1]上是单调递减的,-y在区间[0,1]上是单调递增的.
a=f[sqrt(2)]=-f[sqrt(2)-1]=f[sqrt(2)-2]-f(0.5)=0;
c=f(3)=-f(2)=f(1)=f(-1)a>c.