求圆x^2 y^2=1的切线和两坐标轴围成的三角形的面积的最小值,并求取得最小值时切线的方程0分
问题描述:
求圆x^2 y^2=1的切线和两坐标轴围成的三角形的面积的最小值,并求取得最小值时切线的方程0分
设切点(a,b),则设方程ax+ by=1为什么可以设这个切线方程
答
设出切点得到切线方程,分别求出与坐标轴的交点坐标,表示出切线与两坐标轴所围成的三角形的面积,然后利用基本不等式求出面积的最小值即可.
设切点坐标为(x0,y0),因为切线方程的斜率与过切点的半径所在的直线垂直,过切点的半径所在的直线的斜率为 y0x0,则切线方程的斜率为- x0y0,所以切线方程为y-y0=- x0y0(x-x0),因为切点在圆上所以x02+y02=1,化简得切线方程为x0x+y0y=1,
该切线与两坐标轴的交点坐标分别是 (1x0,0),(0,1y0),
故切线与两坐标轴所围成的三角形的面积是 12x0y0,又x02+y02=1,
故 12x0y0≥1x02+y02=1,即切线与两坐标轴所围成的三角形面积的最小值是1.
故答案为1.