已知函数f(x)=2x除以(x的平方+1),用定义证明该函数在〔1,+无穷)上是增函数
问题描述:
已知函数f(x)=2x除以(x的平方+1),用定义证明该函数在〔1,+无穷)上是增函数
答
f(x)=2x/(x^2+1)
if x1>x2>=1
so f(x1)-f(x2)
=2X1/(X1^2+1)-2X2/(X2^2+1)
={2X1(X2^2)+2X1-2X2(X1^2)-2X2}/(X1^2+1)(X2^2+1)
因为 (X1^2+1)(X2^2+1)>0,暂不考虑
2X1(X2^2)+2X1-2X2(X1^2)-2X2=2X1X2(X2-X1)+2(X1-X2)
=2(X1X2-1)(X2-X1)
因为 X1>X2>=1
X1X2>1,X1>X2
SO 2(X1X2-1)(X2-X1)SO {2X1(X2^2)+2X1-2X2(X1^2)-2X2}/(X1^2+1)(X2^2+1)SO F(X1)
如果我对题意没有理解错,F(1)=2/2=1,F(2)=4/5=0.8,该函数在指定区间应为减函数