阅读下列解题过程:已知a,b.c为三角形ABC的三边,且满足a^2c^2-b^2c^2=a^4-b^4,试判断三角形ABC的形
问题描述:
阅读下列解题过程:已知a,b.c为三角形ABC的三边,且满足a^2c^2-b^2c^2=a^4-b^4,试判断三角形ABC的形
因为a^2c^2-b^2c^2=a^4-b^4 1
所以c^2(a^2-b^2)=(a^2+b^2)(a^2-b^2) 2
所以c^2=a^2+b^2 3
所以三角形ABC为直角三角形
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号——
(2)错误的原因是——
(3)本题正确的结论是——
阅读下列解题过程:已知a,b.c为三角形ABC的三边,且满足a^2c^2-b^2c^2=a^4-b^4,试判断三角形ABC的形状。
答
第2步出现错误,因为有a=b的情况
c^2(a^2-b^2)=(a^2+b^2)(a^2-b^2) 2
(a²-b²)(c²-a²-b²)=0
a²-b²=0或c²-a²-b²=0
所以 a=b或a²+b²=c²
三角形为等腰三角形或直角三角形为什么可能是等腰三角形啊因为a=b的情况,所以是等腰三角形