定义在[-1,1]上的函数y=f(x)是减函数,且是奇函数,若f(a2-a-1)+f(4a-5)>0,求实数a的取值范围.

问题描述:

定义在[-1,1]上的函数y=f(x)是减函数,且是奇函数,若f(a2-a-1)+f(4a-5)>0,求实数a的取值范围.

f(a2-a-1)+f(4a-5)>0⇔f(a2-a-1)>-f(4a-5),因为函数y=f(x)是奇函数,所以上式变为f(a2-a-1)>f(-4a+5),又因为定义在[-1,1]上的函数y=f(x)是减函数,所以−1≤a2−a−1≤1−1≤4a−5≤1a2−a−1...