(x^2+2x+2)^5=a0+a1(x+1)+a2(x+2)^2+……+a9(x+1)^9+a10(x+1)^10

问题描述:

(x^2+2x+2)^5=a0+a1(x+1)+a2(x+2)^2+……+a9(x+1)^9+a10(x+1)^10
(x^2+2x+2)^5=a0+a1(x+1)+a2(x+2)^2+……+a9(x+1)^9+a10(x+1)^10
求 1*a1+2*a2+3*a3+4*a4+.+10*a10

两边求导得:
5(x^2+2x+2)^4 (2x+2)=a1+2a2(x+1)+10a10(x+1)^9
令x=0,
5(2^4)x2=a1+2a2+...+a10a10=160