已知动点C(x,y)到点A(-1,0)的距离是它到点B(1,0)的距离的2倍.(Ⅰ) 试求点C的轨迹方程;(Ⅱ) 试用你探究到的结果求△ABC面积的最大值.

问题描述:

已知动点C(x,y)到点A(-1,0)的距离是它到点B(1,0)的距离的

2
倍.
(Ⅰ) 试求点C的轨迹方程;
(Ⅱ) 试用你探究到的结果求△ABC面积的最大值.

(Ⅰ)由题意,CA=

2
CB,即
(x+1)2+y2
=
2
(x-1)2+y2
,∴(x-3)2+y2=8….(8分)
(Ⅱ)由(Ⅰ)知,轨迹为圆心为(3,0)半径为
8
的圆,而三角形ABC的AB边长为2,现在要使面积最大,即点C的Y坐标的绝对值最大,很容易求出C的Y坐标的绝对值最大为
8
(即为半径),∴|y|max=2
2
….(10分)
(S△ABC)max=
1
2
×AB×2
2
=2
2
….(15分)