lim(x→0) (e^(-1/x^2))/x^100

问题描述:

lim(x→0) (e^(-1/x^2))/x^100

极限不存在
对e^(-1/x^2)进行麦克劳林级数展开即可

我们易知:(e^(-1/x^2))/x^100 = (1/x^100)/(e^(1/x^2)) = (1/x^2)^50/(e^(1/x^2))令 1/x^2 = t,就得:lim(x→0) (e^(-1/x^2))/x^100 = lim(t→+infty) t^50/e^t = 0 (使用L'Hospital's法则,这里infty表示无穷)...