已知数列{an}的前n项和为Sn,Sn=13(an−1)(n∈N*).(Ⅰ)求a1,a2;(Ⅱ)求证数列{an}是等比数列.

问题描述:

已知数列{an}的前n项和为SnSn

1
3
(an−1)(n∈N*).
(Ⅰ)求a1,a2
(Ⅱ)求证数列{an}是等比数列.

(Ⅰ)由S1

1
3
(a1−1),得a1
1
3
(a1−1)

∴a1=
1
2

S2
1
3
(a2−1)
,即a1+a2
1
3
(a2−1)
,得a2
1
4

(Ⅱ)当n>1时,anSnSn−1
1
3
(an−1)−
1
3
(a n−1−1)

an
an−1
=−
1
2
,所以{an}是首项
1
2
,公比为
1
2
的等比数列.
答案解析:(Ⅰ)先通过Sn
1
3
(an−1)
求出a1,进而通过a2=S2-S1,求得a2
(Ⅱ)当n>1时可通过an=Sn-Sn-1,进而化简得
an
an−1
是常数,同时通过(Ⅰ)中
a2
s1
可知亦为此常数,进而可证明{an}是等比数列.
考试点:等比关系的确定;数列的求和.

知识点:本题主要考查了等比关系的确定.确定的关键是看
an
an−1
的值为常数.