已知数列{an}的前n项和为Sn,Sn=13(an−1)(n∈N*).(Ⅰ)求a1,a2;(Ⅱ)求证数列{an}是等比数列.
问题描述:
已知数列{an}的前n项和为Sn,Sn=
(an−1)(n∈N*).1 3
(Ⅰ)求a1,a2;
(Ⅱ)求证数列{an}是等比数列.
答
知识点:本题主要考查了等比关系的确定.确定的关键是看
的值为常数.
(Ⅰ)由S1=
(a1−1),得a1=1 3
(a1−1)1 3
∴a1=−
1 2
又S2=
(a2−1),即a1+a2=1 3
(a2−1),得a2=1 3
.1 4
(Ⅱ)当n>1时,an=Sn−Sn−1=
(an−1)−1 3
(a n−1−1),1 3
得
=−an an−1
,所以{an}是首项−1 2
,公比为−1 2
的等比数列.1 2
答案解析:(Ⅰ)先通过Sn=
(an−1)求出a1,进而通过a2=S2-S1,求得a21 3
(Ⅱ)当n>1时可通过an=Sn-Sn-1,进而化简得
是常数,同时通过(Ⅰ)中an an−1
可知亦为此常数,进而可证明{an}是等比数列.a2 s1
考试点:等比关系的确定;数列的求和.
知识点:本题主要考查了等比关系的确定.确定的关键是看
an |
an−1 |