(2012•陕西三模)已知f(x)=excosx,则此函数图象在点(1,f(1))处的切线的倾斜角为(  )A. 零角B. 锐角C. 直角D. 钝角

问题描述:

(2012•陕西三模)已知f(x)=excosx,则此函数图象在点(1,f(1))处的切线的倾斜角为(  )
A. 零角
B. 锐角
C. 直角
D. 钝角

∵f′(x)=excosx-exsinx,∴f′(1)=e(cos1-sin1)
∴函数图象在点(1,f(1))处的切线的斜率为e(cos1-sin1)
∵e(cos1-sin1)<0,∴函数图象在点(1,f(1))处的切线的倾斜角为钝角
故选D
答案解析:先求函数f(x)=excosx的导数,因为函数图象在点(1,f(1))处的切线的斜率为函数在x=1处的导数,就可求出切线的斜率,再根据切线的斜率是倾斜角的正切值,就可根据斜率的正负判断倾斜角是锐角还是钝角.
考试点:利用导数研究曲线上某点切线方程.
知识点:本题考查了导数的运算及导数的几何意义,以及直线的倾斜角与斜率的关系,属于综合题.