用由特殊到一般的方法知:若数列a1,a2,a3.,an,从第二像开始每一项与前一项之比的常数为q,用含a1,q,n的代数式表示an,如果这个常数q不等于1,勇悍a1,q,n的代数式表示a1+a2+a3+...an的值.
问题描述:
用由特殊到一般的方法知:若数列a1,a2,a3.,an,从第二像开始每一项与前一项之比的常数为q,用含a1,q,n
的代数式表示an,如果这个常数q不等于1,勇悍a1,q,n的代数式表示a1+a2+a3+...an的值.
答
这个是等比数列通项公式和等比数列前n项和公式
an=a1×q^(n-1)
a1+a2+a3+...an=a1(1-q^n)/(1-q) (q≠1)