如图,在△ABC中,D是AB上的一点,E是AC上一点,BE,CD相交于F,∠A=70°,∠ACD=20°,∠ABE=28°,则∠CFE的度数为(  )A. 62°B. 68°C. 78°D. 90°

问题描述:

如图,在△ABC中,D是AB上的一点,E是AC上一点,BE,CD相交于F,∠A=70°,∠ACD=20°,∠ABE=28°,则∠CFE的度数为(  )
A. 62°
B. 68°
C. 78°
D. 90°

∵∠A=70°,∠ACD=20°,
∴∠BDF=∠A+∠ACD=70°+20°=90°,
在△BDF中,∠BFD=180°-∠BDF-∠ABE=180°-90°-28°=62°,
∴∠CFE=∠BFD=62°.
故选A.
答案解析:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BDF=∠A+∠ACD,再根据三角形的内角和定理求出∠BFD,然后根据对顶角相等解答.
考试点:三角形内角和定理.
知识点:本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.