如图,在梯形ABCD中,AB∥DC,DB平分∠ADC,过点A作AE∥BD,交CD的延长线于点E,且∠C=2∠E.(1)求证:梯形ABCD是等腰梯形;(2)若∠BDC=30°,AD=5,求CD的长.
问题描述:
如图,在梯形ABCD中,AB∥DC,DB平分∠ADC,过点A作AE∥BD,交CD的延长线于点E,且∠C=2∠E.
(1)求证:梯形ABCD是等腰梯形;
(2)若∠BDC=30°,AD=5,求CD的长.
答
(1)证明:∵AE∥BD,
∴∠E=∠BDC.
∵DB平分∠ADC,
∴∠ADC=2∠BDC.
又∵∠C=2∠E,
∴∠ADC=∠BCD.
∴梯形ABCD是等腰梯形.
(2)由第(1)问,得∠C=2∠E=2∠BDC=60°,且BC=AD=5,
∵在△BCD中,∠C=60°,∠BDC=30°,
∴∠DBC=90°.
∴DC=2BC=10.
答案解析:(1)证明ABCD是等腰梯形,需证∠ADC=∠C,而∠BDC=∠E,而DB平分∠ADC,所以∠E=∠BDC=∠ADB,所以∠ADC=2∠E=∠C,从而可证明其是等腰梯形.
(2)根据已知得到∠C=2∠E=2∠BDC=60°,且BC=AD=5,所以∠DBC=90°,得到DC=2BC=10.
考试点:等腰梯形的判定;含30度角的直角三角形.
知识点:考查了等腰梯形的判定、直角三角形性质以及推理能力.