设实数a,b,c满足a+b+c=0,ab+bc+ca=-1/2,求a^2+b^2+c^2

问题描述:

设实数a,b,c满足a+b+c=0,ab+bc+ca=-1/2,求a^2+b^2+c^2

∵a+b+c=0,
则(a+b+c)^2=0
a^2+b^2+c^2+2ab+2bc+2ac=0
a^2+b^2+c^2=-2(ab+bc+ca)
∴a^2+b^2+c^2=-2×(-1/2)=1