当x趋向1时,求极限lim(1-x)tan(πx/2),求详细过程~

问题描述:

当x趋向1时,求极限lim(1-x)tan(πx/2),求详细过程~

这个也可以用等价无穷小:
原式=lim (1-x)sin(πx/2)/cos(πx/2)=lim (1-x)/cos(πx/2)=lim (1-x)/sin(π/2-πx/2)=lim (1-x)/(π/2-πx/2)=2/π

lim(1-x)tan(πx/2)=lim (1-x)/cot(πx/2)
=lim (-1)/(π/2)*[-sin^2(πx/2)] (洛比达法则)
=2/π

原式=lim(1-x)sin(πx/2)/cos(πx/2)
是0/0型,用洛必达法则
=lim[-sin(πx/2)+(1-x)πcos(πx/2)/2]/[-πsin(πx/2)/2]
=1/(π/2)
=2/π

洛比达法则怎么样?