已知抛物线关于x轴对称,他的顶点在坐标原点,且过点A(2,2根号2),求1、抛物线的标准方程.2、过抛物线的焦点F和点A的直线交抛物线于A.B两点,求线段AB长度

问题描述:

已知抛物线关于x轴对称,他的顶点在坐标原点,且过点A(2,2根号2),求1、抛物线的标准方程.2、过抛物线的焦点F和点A的直线交抛物线于A.B两点,求线段AB长度

分析:1)因为抛物线关于x轴对称,抛物线顶点为坐标原点,即用抛物线的方程Y方=2PX,又因为抛物线过点A(2,2根号2),代入得:P=2,所以Y方=4X
2)因为焦点F(P/2,0),即(1,0)画图,A、F两点确定AB直线,Y=KX+b,带入两点,有Y=2倍根号2乘X-2倍根号2;与抛物线的标准方程Y方=4X 联立,解得X=2或X=1/2,即B点横坐标为X=1/2,代入得Y=正负根号2,即Y=-根号2;AB长度用两点间距离公式AB=根号下(横坐标差的平方+纵坐标差的平方)即AB=9/2.