已知X2/a2+Y2/b2=1,焦点于X轴上,左焦点为F,右焦点为A,点B在椭圆上,且BF垂直于X轴,AB交Y于P,若AP=2PB,求离心率
问题描述:
已知X2/a2+Y2/b2=1,焦点于X轴上,左焦点为F,右焦点为A,点B在椭圆上,且BF垂直于X轴,AB交Y于P,若AP=2PB,求离心率
答
题是不是错了,应该是右顶点为A.F(-c,0),A(a,0),又BF垂直于X轴,所以BF为通径的一半,即BF=b^2/a,设原点为O,画出图,易知三角形APO与三角形ABF相似,且相似比为AP/AB=2/3,则AO/AF=a/(a+c)=2/3,即a=2c,所以离心率e=c/a=1/2