x=sint+cost y=sintcost 化为普通方程.

问题描述:

x=sint+cost y=sintcost 化为普通方程.

由x=sint+cost,
得:x^2=(sint+cost)^2
即:
x^2=(sint)^2+2sintcost+(cost)^2
x^2=(sint)^2+(cost)^+2sintcost
x^2=1+2sintcost
已知:y=sintcost,代入上式,有:
x^2=1+2y
整理,得:
y=(x^2-1)/2

抓住sint平方加cost平方等于一得特点,有x平方-2y=1

∵(sint+cost)²=sin²t+2sintcost+cos²t=1+2sintcost
∴x²=1+2y
∴y=x²/2-1/2