难.(17 20:56:34) 1/(n)-1/(n+1)=1/n(n+1) 1/(n+1)-1/(n+2)=1/(n+1)(n+2) 1/(n+2)-1/(n+3)=1/(n+2)(n+3) 化简:1/n(n+1)+1/(n+1)(n+2)+1/(n+2)(n+3)+.+1/(n+99)+(n+100)
问题描述:
难.(17 20:56:34)
1/(n)-1/(n+1)=1/n(n+1)
1/(n+1)-1/(n+2)=1/(n+1)(n+2)
1/(n+2)-1/(n+3)=1/(n+2)(n+3)
化简:1/n(n+1)+1/(n+1)(n+2)+1/(n+2)(n+3)+.+1/(n+99)+(n+100)
答
ISBN 9787561758267看这本书
上面都有
1/n(n+1)+1/(n+1)(n+2)+1/(n+2)(n+3)+........+1/(n+99)+(n+100)
=1/n-1/(n+1)+1/(n+1)-1/(n+2)+....1/(n+99)-1/(n+100)
=1/n-1/(n+100)
=100/n(n+100)
这叫拆项相削,
公式:D/n(n+1)+D/(n+1)(n+2)+D/(n+2)(n+3)+........+D/n(n+M)
=1/D*(1/N-1/(N+M))
答
1/n(n+1)+1/(n+1)(n+2)+1/(n+2)(n+3)+.+1/(n+99)+(n+100)
=1/n-1/(n+1)+1/(n+1)-1/(n+2)+.1/(n+99)-1/(n+100)
=1/n-1/(n+100)
=100/n(n+100)