已知x^2-5x-2005=0,求代数式(x-2)^3-(x-1)^2+1/x-2的值

问题描述:

已知x^2-5x-2005=0,求代数式(x-2)^3-(x-1)^2+1/x-2的值

(x-3)^3-(x-1)^2+1=x^3-9x^2+27x-27-x^2+2x-1+1=x^3-10x^2+29x-27
由于x^2-5x-2005=0 则x^2-5x=2005 则x^3-5x^2=2005x
故x^3-10x^2+29x-27=2034x-27-5x^2=2034x-27-5(5x+2005)=2009x-10052
=2009(x-2)-6034
故[(x-3)^3-(x-1)^2+1]/(x-2)=2009-6034/(x-2)
又x^2-5x-2005=0 则x=(5+√8045)/2或x=(5-√8045)/2
代入得:2009-6019/(x-2)

原式=(x-2)^2+[1-(x-1)^2]/(x-2)=(x-2)^2+x(1-x+1)/(x-2)=x^2-4x+4-x=(x^2-5x-2005)+(4+2005)=0+4+2005=2009