设等差数列an的前n项和为Sn,等比数列bn的前n项和为Tn,已知数列bn的公比为q(q>0),a1=b1=1,S5=45,T3=a3-b2.求q/(a1a2)+q/(a2a3)+…+q/(an+a(n+1))
问题描述:
设等差数列an的前n项和为Sn,等比数列bn的前n项和为Tn,已知数列bn的公比为q(q>0),a1=b1=1,S5=45,T3=
a3-b2.
求q/(a1a2)+q/(a2a3)+…+q/(an+a(n+1))
答
s5=5*(a1+a5)/2=45 得 a5=17 所以d=(17-1)/4=4
则 an=1+(n-1)*4=4n-3
T3=1+q+q^2=9-q 因为q>0, 得q=2
于是 q/(a1a2)+q/(a2a3)+…+q/(an+a(n+1))
=2*(1/(1*5)+1/(5*9)+....1/(4(n-1)*4n))
=1/2*(1-1/5+1/5-1/9+.....+1/4(n-1)-1/4n)
=1/2*(1-1/4n)
答
设{an}公差为dS5=5a1+10d=5(a1+2d)=5a3=45a3=9a3-a1=2d=9-1=8d=4an=a1+(n-1)d=1+4(n-1)=4n-3T3=b1+b2+b3=b1(1+q+q²)=1×(1+q+q²)=1+q+q²=a3-b2=9-b1q=9-1×q=9-qq²+2q-8=0(q+4)(q-2)=0q=-4(与已...