已知关于x的一元二次方程ax²+bx+c=0(a≠0)的一个实数根是-1且系数a,b满足条件b=√ a-2+√ 2-a+9求关于y的一元二次方程y²-2√ c y+c=0的实数根
问题描述:
已知关于x的一元二次方程ax²+bx+c=0(a≠0)的一个实数根是-1且系数a,b满足条件b=√ a-2+√ 2-a+9
求关于y的一元二次方程y²-2√ c y+c=0的实数根
答
由题知:a-b+c=0;b=√ a-2+√ 2-a+9;先由二次根式的定义知:a-2>等于0;2-a>等于0.得a=2,进而知b=9,最后求得c=7,关于y的方程为y²-2√ 7 y+7=0,最后求得实数根为y=√ 7