一个两位数,它的十位数字为a,个位数字为b,若把它的十位数字与个位数字对调,得到一个新的两位数.①试计算新的两位数与原数的和与差;②回答:这个和能被11整除吗?差呢?

问题描述:

一个两位数,它的十位数字为a,个位数字为b,若把它的十位数字与个位数字对调,得到一个新的两位数.
①试计算新的两位数与原数的和与差;
②回答:这个和能被11整除吗?差呢?

(1)(10b+a)+(10a+b)
=10b+a+10a+b=11a+11b
=11(a+b);
(10b+a)-(10a+b)
=10b+a-10a-b=9b-9a
=9(b-a);
即新的两位数与原数的和为11(a+b),差为9(b-a);
(2)这个和能被11整除,差不能被11整除.
∵和为和为11(a+b)
∴11(a+b)÷11=a+b
所以这个和能被11整除;
差为9(b-a)
9(b-a)÷11=

9(b−a)
11
,b-a<11
∴差不能被11整除.
答案解析:(1)根据题意能得出新的两位数,与两位数进行加减即可得出结果;
(2)由(1)得出的结果进行分析,得出结果.注意两位数的表示方法为,每位上的数字乘以其所在的位数,再相加即可.
考试点:整式的加减.

知识点:本题考查代数式求值,关键是理清其中的关系,得出正确的结果.注意两位数的表示方法为,每位上的数字乘以其所在的位数,再相加即可.