若函数y=f(x)满足下列条件①对于任意的x∈R,y∈R,恒有f(x+y)=f(x)f(y)②x∈(0,正无穷)时,f(X)∈(1,正无穷)求证f(x-y)=f(x)/f(y) (f(y)≠0)

问题描述:

若函数y=f(x)满足下列条件
①对于任意的x∈R,y∈R,恒有f(x+y)=f(x)f(y)
②x∈(0,正无穷)时,f(X)∈(1,正无穷)
求证f(x-y)=f(x)/f(y) (f(y)≠0)

把1变形为f(x)=f(x+y)/f(y)且(f(y)≠0).把x-y带入x,可得f(x-y)=f(x)/f(y)

由f(x+y)=f(x)f(y)
得f(-x)=f(x)f(-2x)
而f(-2x)=f(-x)f(-x)
代入上式得f(x)=1/f(-x)
f(x-y)=f(x)f(-y)
f(-y)=1/f(y)得到f(x-y)=f(x)/f(y)