设2^a=3,2^b=6,2^c=12,则() A .b^2=ac B .2b=ac C .2b=a+c D .b^2=a+c 选什么?

问题描述:

设2^a=3,2^b=6,2^c=12,则() A .b^2=ac B .2b=ac C .2b=a+c D .b^2=a+c 选什么?

2^b *2^b=2^(2b)=6*6=36=2^a * 2^c=2^(a+c)
所以:2b=a+c,选C

2^a=3 2^c=12
相乘可知
2^(a+c) = 36
2^b=6 两边平方可知
2^(2b) = 36
所以
a+c = 2b