已知复数z=1-i(i是虚数单位),若a∈R使得az+2z∈R,则a=______.
问题描述:
已知复数z=1-i(i是虚数单位),若a∈R使得
+2z∈R,则a=______. a z
答
知识点:本题考查复数的基本运算,复数的基本概念,考查计算能力.
因为复数z=1-i,所以
+2z=a z
+2-2i=a 1−i
+2-2i=a(1+i) (1−i)(1+i)
+2-2i+a 2
i,a 2
因为
+2z∈R,所以2-a z
=0,∴a=4.a 2
故答案为:4.
答案解析:利用复数的除法运算,化复数的分母为实数,通过复数是实数,求出a的值.
考试点:复数代数形式的乘除运算.
知识点:本题考查复数的基本运算,复数的基本概念,考查计算能力.