设扇形周长为8cm,面积为4cm^2,则扇形的圆心角的弧度数是多少?

问题描述:

设扇形周长为8cm,面积为4cm^2,则扇形的圆心角的弧度数是多少?

2R+L=8
S=1/2RL
R=2cm, L=4cm, α =2rad

设半径为x
8-2x=(2*4)/x
x1=x2=2
设圆心角度数为y
(2*pai*y)/180=4
y=360/pai
y约等于114。6

用|α|表示扇形圆心角的弧度数,R表示半径,
则扇形弧长公式为:L=|α|R,面积公式为:S=|α|R²
根据题意得
|α|R=8
|α|R²/2=4
解得 |α|=8

2R+L=8
S=1/2RL
R=2, L=4, α =2

用L表示弧长,R表示半径
C=2R+L=8,L=8-2R
S=RL/2
(8-2R)R/2=4
-R²+4R=4
R²-4R+4=0
R=2
L=4
因此弧度为L/R=2