(2cos^2-1)/2tan(π/4-α)sin^2(π/4+α)
问题描述:
(2cos^2-1)/2tan(π/4-α)sin^2(π/4+α)
答
sin(π/4+a)=cos[π/2-(π/4+a)]=cos(π/4-a)
所以分母=2[sin(π/4-a)/cos(π/4-a)]*cos²(π/4-a)
=2sin(π/4-a)cos(π/4-a)
=sin[2(π/4-a)]
=sin(π/2-2a)
=cos2a
分子=2cos²a-1=cos2a
所以原式=cos2a/cos2a=1