∫1/(sinx)^2 dx = 是不定积分,怎么换元啊?

问题描述:

∫1/(sinx)^2 dx =
是不定积分,怎么换元啊?

sin(3π/4-α)
=sin[π-(3π/4-α)]
=sin(π/4+α)=√3/2
x2-6x+10
=x2-6x+9+1
=(x-3)2+1
所以原式=√[(x-3)2+1]
求什么?
如果是最小值,
则x=3,最小值=√1=1

∫1/(sinx)^2 dx=∫(cecx)^2dx=-∫-(cecx)^2dx=-cotx

原式=∫(cscx)^2dx
=-∫-(cscx)^2dx
=-cotx+C