如图,△ABC中,∠C=90°,∠B=60°,点O在AB上,AO=x,⊙O的半径为1.问当x在什么范围内取值时,AC与⊙O相离、相切、相交?

问题描述:

如图,△ABC中,∠C=90°,∠B=60°,点O在AB上,AO=x,⊙O的半径为1.问当x在什么范围内取值时,AC与⊙O相离、相切、相交?

∵∠C=90°,∠B=60°,∴∠A=30°,∵AO=x,∴OD=12AO=12x,(1)若圆O与AC相离,则有OD大于r,即12x>1,解得:x>2;(2)若圆O与AC相切,则有OD等于r,即12x=1,解得:x=2;(3)若圆O与AC相交,则有OD小于r,即...
答案解析:由三角形的内角和可求出∠A的大小,根据含30°直角三角形的性质即可得到OD和AO的关系,
(1)若圆O与AC相离,则有OD大于r,列出关于x的不等式,求出不等式的解集即可得到x的范围;
(2)若圆O与AC相切,则有OD=r,求出x的值即可;
(3)若圆O与AC相交,则有OD小于r,列出关于x的不等式,求出不等式的解集即可得到x的范围.
考试点:直线与圆的位置关系.
知识点:此题考查了直线与圆的位置关系,直线与圆的位置关系由圆心到直线的距离d与圆的半径r的大小关系来判断.