一道三角函数数学题.在锐角三角形ABC中,角A,B,C的对边为a,b,c且满足(2a-c)cosB=bcosC(1)求角B的大小(2)设m=(sinA,1),n=(3,cos2A),试求mn的取值范围

问题描述:

一道三角函数数学题.
在锐角三角形ABC中,角A,B,C的对边为a,b,c且满足(2a-c)cosB=bcosC
(1)求角B的大小
(2)设m=(sinA,1),n=(3,cos2A),试求mn的取值范围

(1)首先证明三角形中的一个等式:ccosB+bcosC=a.
由余弦定理:cosB=(a^2+c^2-b^2)/(2ac),cosC=(a^2+b^2-c^2)/(2ab),所以
ccosB+bcosC
=c*(a^2+c^2-b^2)/(2ac)+b*(a^2+b^2-c^2)/(2ab)
=(a^2+c^2-b^2)/(2a)+(a^2+b^2-c^2)/(2a)
=2a^2/(2a)
=a
即 ccosB+bcosC=a.
因此由 (2a-c)cosB=bcosC 可知 2acosB=ccosB+bcosC=a,即 2acosB=a,所以 cosB=1/2,但B为三角形内角,所以 B=60度.
(2) mn
=(sinA,1)(3,cos2A)
=3sinA+cos2A (由倍角公式:cos2A=1-2(sinA)^2)
=-2(sinA)^2+3sinA+1 (配方)
=-2(sinA-3/4)^2+17/8
因为 B=60度,所以 0