已知x=1/(3-2根号2),y=1/(3+2根号2),求x/y+y/x-4的值

问题描述:

已知x=1/(3-2根号2),y=1/(3+2根号2),求x/y+y/x-4的值

不能按计算机吗?
=30

x=3+2根号2 y=3-2根号2
x/y+y/x-4=(x^2+y^2)/(xy)-4=34-4=30

x=1/(3-2√2)=(3+2√2)/(3-2√2)(3+2√2)=3+2√2y=1/(3+2√2)=(3-2√2)/(3+2√2)(3-2√2)=3-2√2x/y+y/x-4=(3+2√2)/(3-2√2)+(3-2√2)/(3+2√2)-4=(3+2√2)^2+(3-2√2)^2-4=17×2-4=30...

解:化简得x=3+2根号2,y=3-2根号2,所以,x/y+y/x+4=(x^2+y^2)/xy-4=[(x-y)^2]/xy=[(3+2根号2-3+2根号2)^2]/[(3+2根号2)*(3-2根号2)]=32
注:x^2为x的二次方.