高中微积分:y=∫(sint+costsint)dt从0积到x,则y的最大值是?
高中微积分:y=∫(sint+costsint)dt从0积到x,则y的最大值是?
我跟一楼答得差不多,给他分吧
y=∫(sint+0.5sin2t)dt=-(cost+0.25cos2t)(上限x,下限0).
y=-(cosx+0.25cos2x)+5/4.令μ=cosx,求多项式μ+0.125(1+μ^2)最小即可(μ∈[-1,1]).
当μ=-1时有最小值-3/4,所以y有最大值2
sint+costsint=sint+1/2sin2t
∫sint+1/2sint=-cost-1/4cos2t从0到x
原式=-cosx-1/4cos2x+5/4=-1/2cos^2 x-cosx+3/2
当cosx=-1时有原式=2
y=∫(sint)dt+(1/2)∫sin2tdt(上限x下限0)
=-cost+(1/4))∫sin2td(2t)(上限x 下限0)
=-[cosx-cos0)-(1/4)cos2t)(上限x 下限0)
=1-cosx-(cos2x-cos0)/4
=1-cosx+1/4-[2(cosx)^2-1]/4
=3/2-cosx-(cosx)^2/2,
令u=cosx,
y=3/2-u-u^2/2
=-(u^2+2u-3)/2
=-[(u+1)^2-4]/2
=-(u+1)^2+2,
当u=-1时,y有最大值为2,
cos2x=-1,x=π,
即x=π时,y有最大值为2,
f(x)=sinx+sinxcosx=sinx+1/2sin2xF(X)=-cosx-1/2cos2x=-cosx-1/2(2(cosx)^2-1)=-cosx-(cosx)^2+1/2设t=-cosxF(t)=-t^2+t+1/2 t在-1与1之间 t=1/2时F(t)最大为3/4t=-1时最小-5/4