数列{an}满足a1>1,an+1-1=an(an-1),(n∈N+),且 1/a1+1/a2+…+1/a2012=2,则a2013-4a1的最小值为 _ .

问题描述:

数列{an}满足a1>1,an+1-1=an(an-1),(n∈N+),且 

1
a1
+
1
a2
+…+
1
a2012
=2,则a2013-4a1的最小值为 ___ .

a1>1,由an+1-1=an(an-1),(n∈N+)知,对所有n,an>1,等式两边取倒数,得1an+1-1=1an(an-1)=1an-1-1an,得,1an=1an-1-1an+1-1,则1a1+1a2+…+1a2012=1a1-1-1a2013-1=2整理可得,a2013=2-a13-2a1,a2013-4a1=...