如图,平行四边形ABCD中,AB⊥AC,AB=1,BC=5.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.
问题描述:
如图,平行四边形ABCD中,AB⊥AC,AB=1,BC=
.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.
5
(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;
(2)试说明在旋转过程中,线段AF与EC总保持相等;
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.
答
(1)证明:当∠AOF=90°时,∵∠BAO=∠AOF=90°,∴AB∥EF,又∵AF∥BE,∴四边形ABEF为平行四边形.(2)证明:∵四边形ABCD为平行四边形,在△AOF和△COE中∠FAO=∠ECOAO=CO∠AOF=∠COE.∴△AOF≌△COE(ASA...
答案解析:(1)当旋转角为90°时,∠AOF=90°,由AB⊥AC,可得AB∥EF,即可证明四边形ABEF为平行四边形;
(2)证明△AOF≌△COE即可;
(3)EF⊥BD时,四边形BEDF为菱形,可根据勾股定理求得AC=2,∴OA=1=AB,又AB⊥AC,∴∠AOB=45°.
考试点:菱形的判定;平行四边形的判定与性质;旋转的性质.
知识点:此题结合旋转的性质,主要考查平行四边形和菱形的判定,有一定难度.