证明:对于任意实数a,b,c,方程(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0总有实数根.
问题描述:
证明:对于任意实数a,b,c,方程(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0总有实数根.
答
展开方程化简得3x²-2(a+b+c)x+ac+bc+ab=0判别式△=4(a+b+c)²-4*3(ac+bc+ab)=4(a²+b²+c²+2ab+2ac+2bc)-12(ac+bc+ab)=4(a²+b²+c²-ab-ac-bc)=2(2a²+2b²...