如图所示,平面α∥平面β,点A∈α,C∈α,点B∈β,D∈β,点E,F分别在线段AB,CD上,AB,CD所在直线异面,且AE:EB=CF:FD (Ⅰ)求证:EF∥β; (Ⅱ)若E,F分别是AB,CD的中点,AC=4,BD=6,
问题描述:
如图所示,平面α∥平面β,点A∈α,C∈α,点B∈β,D∈β,点E,F分别在线段AB,CD上,AB,CD所在直线异面,且AE:EB=CF:FD
(Ⅰ)求证:EF∥β;
(Ⅱ)若E,F分别是AB,CD的中点,AC=4,BD=6,且AC,BD所成的角为60°,求EF的长.
答
(Ⅰ)证明:连接AD,作EG∥BD交AD于点G,连接FG,因为AE:EB=CF:FD∴EG∥BD,FG∥AC,则EG∥β,FG∥α,∵α∥β∴FG∥β;又因为;EG∩FG=G.∴平面EFG∥β而EF⊂平面EFG;∴EF∥β(Ⅱ) ∵EG∥BD,FG∥AC且E,...