求证x²+y²+z²≥xy+yz+zx

问题描述:

求证x²+y²+z²≥xy+yz+zx

∵2(x²+y²+z²)-2(xy+yz+xz)
=(x²+y²-2xy)+(y²+z²-2yz)+(x²+z²-2xz)
=(x-y)²+(y-z)²+(x-z)²
≥0
∴2(x²+y²+z²)≥2(xy+yz+xz)
∴x²+y²+z²≥xy+yz+zx