不定积分∫f′(x³)dx=x³+c求f(x)
问题描述:
不定积分∫f′(x³)dx=x³+c求f(x)
答
由于∫3x²dx=x³+C
因此可知:f '(x³)=3x² (1)
令x³=u,则x²=u^(2/3)
(1)化为:f '(u)=3u^(2/3)
两边积分得:f(u)=3*(3/5)*u^(5/3)+C
即:f(x)=(9/5)x^(5/3)+C